脱硫效率的影响因素
1 烟气与脱硫剂接触时间
烟气自气-气加热器进入吸收塔后,自下而上流动,与喷淋而下的石灰石浆液雾滴接触反应,接触时间越长,反应进行得越完全。每层喷淋盘对应一台循泵,排列顺序为1、2、3、4号自下而上(见图1),4号循环泵对应的喷淋盘位置最高,与烟气接触洗涤的时间最长,因此投运4号循环泵有利于烟气和脱硫剂充分反应,相应的脱硫率也高。从表1实际运行的情况可以发现,在处理1台机组烟气时,不论运行哪3台循环泵都能保持很高的脱硫率,而运行2台循环泵时如果开启4号循环泵,则脱硫率可比运行其它循环泵时的脱硫率高出1~2%,效果显著;处理2台机组烟气时,2、3、4循环泵联合运行时的脱硫率要比1、2、3号泵联合运行时高出3%以上,可见,4号循环泵的投运对提高脱硫率效果显著,3号循环泵的影响次之,2号、1号依次减弱,也就是说,烟气与脱硫剂的接触时间越长,脱硫率越高。另外,新鲜的石灰石浆液是通过3号或4号循环管注入的,所以3、4号循环泵的投运与否将直接影响脱硫率。
2 浆液循环量
新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2等气体与石灰石的反应并不完全,需要不断地循环反应,从表1可以发现,运行3台循环泵的脱硫率明显高于只运行2台的工况。原因是增加了浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了SO2的去除率。此外,增加浆液的循环量,将促进混合浆液中的HSO3-氧化成SO42-,有利于石膏的形成。
3 吸收塔浆液pH值
烟气中SO2与吸收塔浆液接触后发生如下一些化学反应:
SO2+H2O=HSO3-+H+
CaCO3+H+=HCO3-+Ca2+
HSO3-+1/2O2=SO42-+H+
SO42-+Ca2++2H2O=CaSO4·2H2O
从以上反应历程不难发现,高pH的浆液环境有利于SO2的吸收,而低pH则有助于Ca2+的析出,二者互相对立,因此选择一合适的pH值对烟气脱硫反应至关重要。为此我们做了一次试验,在连续一段时间(10 h)内,人为调整石灰石浆液进吸收塔的流量,使浆液的pH值先从小到大,然后又逐渐减少,图2反映了pH变化时,脱硫率及浆液中CaCO3、CaSO4·2H2O含量的变化曲线。
通过试验发现,在一定范围内随着吸收塔浆液pH的升高,脱硫率一般也呈上升趋势,因为高pH意味着浆液中有较多的CaCO3存在,对脱硫当然有益,但pH>5.8后脱硫率不会继续升高,反而降低,原因是随着H+浓度的降低,Ca2+的析出越来越困难,当pH
=5.9时,浆液中CaCO3的含量达到2.98%,而CaSO4·2H2O含量也低于90%,显然此时SO2与脱硫剂的反应不彻底,既浪费了石灰石,又降低了石膏的品质,pH再下降时,CaSO4·2H2O含量又回升,CaCO3则降低。因此,浆液pH值既不能太高又不能太低,一般情况下控制吸收塔浆液的pH在5.4~5.5之间,能使脱硫反应的Ca/S保持在设计值(1.02左右)内,获得较为理想的脱硫率,同时又使浆液中CaCO3的含量低于1%
4 氧量
O2参与烟气脱硫的化学过程,使4HSO3-氧化为SO42-,图3显示了接收二台机组烟气时,在烟气量、SO2浓度、烟温等参数基本恒定的情况下氧量对脱硫率的影响曲线,随着烟气中O2含量的增加,CaSO4·2H2O的形成加快,脱硫率也呈上升趋势。当原烟气中氧量一定时,可入为往吸收塔浆液中增加氧气,所以多投运氧化风机可提高脱硫率。当烟气中O2含量为6.0%时,运行2台氧化风机比运行1台氧化风机的脱硫率高出2%左右。
5 石膏浆液密度
随着烟气与脱硫剂反应的进行,吸收塔的浆液密度不断升高,通过吸收塔浆液化学成分的取样分析结果,当密度>1085 kg/m3时,混合浆液中Ca-CO3和CaSO4·2H2O的浓度已趋于饱和,CaSO4·2H2O对SO2的吸收有抑制作用,脱硫率会有所下降;而石膏浆液密度过低(<1075 kg/m3=时,说明浆液中CaSO4·2H2O的含量较低,CaCO3的相对含量升高,此时如果排出吸收塔,将导致石膏中Ca-CO3含量增高,品质降低,而且浪费了脱硫剂石灰石。因此运行中控制石膏浆液密度在一合适的范围内(1075~1085 kg/m3),将有利于FGD的有效、经济运行。
6 烟尘
原烟气中的飞灰在一定程度上阻碍了SO2与脱硫剂的接触,降低了石灰石中Ca2+的溶解速率,同时飞灰中不断溶出的一些重金属如Hg、Mg、Cd、Zn等离子会抑制Ca2+与HSO3-的反应。试验证明,如果烟气中粉尘含量持续超过400 mg/m3(干),则将使脱硫率下降1%~2%,并且石膏中CaSO4·2H2O的含量降低,白度减少,影响了品质。
7 烟气温度实际运行过程中,机组负荷变化较频繁,FGD进口烟温也会随之波动,对脱硫率有一定的影响。理论上进入吸收塔的烟气温度越低,越利于SO2气体溶于浆液,形成HSO3-,所以高温的原烟气先经过气-气加热器降温后再进入吸收塔与脱硫剂接触有利于SO2的吸收。实际运行结果也证实了这一点,在处理二台机组烟气、运行2、4号循环泵、进口烟气SO2浓度和氧量基本不变的工况下,当进入吸收塔的烟温为96℃时,脱硫率为92.1%;当烟温升到103℃时,脱硫率已下降至84.8%,而接收一台机组烟气时烟温对脱硫率的影响就更明显了。